A class of domains with fractal boundaries: Functions spaces and numerical methods

Yves Achdou

joint work with T. Deheuvels and N. Tchou

Laboratoire J-L Lions, Université Paris Diderot

École Centrale - 14 juin 2012
Geometrical construction
Function spaces on Γ and known results
New trace and extension results
Numerical methods
Contents

1 Geometrical construction
 • A class of self-similar sets
 • A class of ramified domains

2 Function spaces on Γ, available results on trace and extension
 • Function spaces on d-sets
 • Available trace and extension theorems
 • The subcritical case
 • The critical case

3 New trace and extension results
 • A self-similar construction of a trace operator $W^{1,p}(\Omega) \to L^p_\mu(\Gamma)$
 • Haar wavelets on Γ
 • New trace results
 • Extensions

4 Numerical methods
A class of self-similar sets Γ

Define two similitudes f_1 and f_2
with ratio $a < 1$ and opposite
angles $\pm \theta$ ($0 \leq \theta < \frac{\pi}{2}$).
A class of self-similar sets Γ

Define two similitudes f_1 and f_2 with ratio $a < 1$ and opposite angles $\pm \theta$ ($0 \leq \theta < \frac{\pi}{2}$).

The set Γ

Γ is said to be the self-similar set associated to the similitudes f_1 and f_2, i.e. the unique compact set in \mathbb{R}^2 such that

$$\Gamma = f_1(\Gamma) \cup f_2(\Gamma).$$
A class of self-similar sets Γ

Define two similitudes f_1 and f_2 with ratio $a < 1$ and opposite angles $\pm \theta$ ($0 \leq \theta < \frac{\pi}{2}$).

The set Γ

Γ is said to be the self-similar set associated to the similitudes f_1 and f_2, i.e. the unique compact set in \mathbb{R}^2 such that

$$\Gamma = f_1(\Gamma) \cup f_2(\Gamma).$$

It can be proved that the Hausdorff dimension of Γ is

$$d := \dim_H(\Gamma) = -\frac{\log 2}{\log a}.$$
The self-similar measure on Γ

Theorem (J. E. Hutchinson, 1981)

There exists a unique Borel invariant probability measure μ on the self-similar set Γ, in the sense that for every Borel set B in Γ,

$$
\mu(B) = \mu(f_1^{-1}(B)) + \mu(f_2^{-1}(B)).
$$

The critical value a^*

There exists a critical value a^* depending on θ such that:

- if $a < a^*$, then Γ is totally disconnected,

\[a < a^* \]
The critical value a^*

There exists a critical value a^* depending on θ such that:

- if $a < a^*$, then Γ is totally disconnected,
- if $a = a^*$, then Γ is connected and has multiple points.
A class of ramified domains (1/2)
A class of ramified domains (1/2)

\[f_1(\Gamma^0) \]

A class of self-similar sets
A class of ramified domains

Y. Achdou
Sobolev extension property
A class of ramified domains (1/2)

\[f_1(\Gamma^0) \quad \text{and} \quad f_2(\Gamma^0) \]

\[\Gamma^0 \]
A class of ramified domains (1/2)
A class of ramified domains (1/2)
A class of ramified domains (1/2)
A class of ramified domains (2/2)

If $\sigma = (\sigma(1), \ldots, \sigma(n)) \in \mathcal{A}_n$, \(\mathcal{A}_n := \{1, 2\}^n \), write

$$f_\sigma = f_{\sigma(1)} \circ \cdots \circ f_{\sigma(n)}.$$

Define

$$\Omega = \text{Interior} \left(\bigcup_{n \in \mathbb{N}} \bigcup_{\sigma \in \mathcal{A}_n} f_\sigma(Y^0) \right).$$
Function spaces on closed sets

Definition (d-set)

If F is a closed set in \mathbb{R}^n and $0 < d \leq n$, a Borel measure m on F is said to be a d-measure if there exist constants $c_1, c_2 > 0$ s.t.

$$\forall x \in F, \forall r \in (0, 1), \quad c_1 r^d \leq m(B(x, r)) \leq c_2 r^d,$$

where $B(x, r)$ is the euclidean metric ball. A closed set having a d-measure is referred to as a d-set.
Function spaces on closed sets

Definition (d-set)

If F is a closed set in \mathbb{R}^n and $0 < d \leq n$, a Borel measure m on F is said to be a d-measure if there exist constants $c_1, c_2 > 0$ s.t.

$$\forall x \in F, \forall r \in (0, 1), \quad c_1 r^d \leq m(B(x, r)) \leq c_2 r^d,$$

where $B(x, r)$ is the euclidean metric ball. A closed set having a d-measure is referred to as a d-set.

Definition (Sobolev spaces on d-sets)

For $0 < s < 1$ and $1 \leq p \leq \infty$, if $v \in L^p_m(F)$ then $v \in W^{s,p}(F)$ iff

$$|v|_{W^{s,p}(F)} := \iint_{|x-y|<1} \frac{|v(x) - v(y)|^p}{|x-y|^{d+ps}} \ d m(x) d m(y) < \infty.$$
A trace theorem on \(d\)-sets

Theorem (A. Jonsson, H. Wallin, 1984)

If \(F \subset \mathbb{R}^n\) is a \(d\)-set, \(0 < d < n\), \(1 < p < \infty\), and \(1 - \frac{n-d}{p} > 0\), then

\[
W^{1,p}(\mathbb{R}^n)_{\mid F} = W^{1-\frac{n-d}{p},p}(F).
\]
A trace theorem on \(d \)-sets

Theorem (A. Jonsson, H. Wallin, 1984)

If \(F \subset \mathbb{R}^n \) is a \(d \)-set, \(0 < d < n \), \(1 < p < \infty \), and \(1 - \frac{n-d}{p} > 0 \), then

\[
W^{1,p}(\mathbb{R}^n)|_F = W^{1-\frac{n-d}{p},p}(F).
\]

Definition of the trace: If \(u \in L^1_{loc}(\mathbb{R}^n) \) then \(u \) is strictly defined at \(x \in \mathbb{R}^n \) if

\[
\bar{u}(x) := \lim_{r \to 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) \, dy
\]

exists. We define the trace of \(u \) on \(F \) to be \(\bar{u}|_F \), defined only on those points where \(u \) is strictly defined.
A trace theorem on \(d\)-sets

Theorem (A. Jonsson, H. Wallin, 1984)

If \(F \subset \mathbb{R}^n\) is a \(d\)-set, \(0 < d < n\), \(1 < p < \infty\), and \(1 - \frac{n-d}{p} > 0\), then

\[
W^{1,p}(\mathbb{R}^n)|_F = W^{1-\frac{n-d}{p},p}(F).
\]

Examples

- \(d = n - 1\), \(p = 2\):
 \[
 W^{1,2}(\mathbb{R}^n)|_F = W^{1/2,2}(F) = H^{1/2}(F).
 \]

- \(n = 2\), \(F = \) Cantor set in a line segment, \(d = \log 2 / \log 3\),
 \[
 W^{1,2}(\mathbb{R}^2)|_F = W^{d/2,2}(F).
 \]
Consequence: trace results on Γ

Proposition

The set Γ endowed with the self-similar measure μ is a d-set, where $d = -\frac{\log 2}{\log a}$.

Corollary

If $p > 1$, then

$$W^{1,p}(\mathbb{R}^2)|_\Gamma = W^{1-\frac{2-d}{p},p}(\Gamma).$$

Question: can we characterize the trace on Γ of $W^{1,p}(\Omega)$?
Extension domains

Definition ($W^{k,p}$-extension domain)

A domain $D \subset \mathbb{R}^n$ is called a $W^{k,p}$-extension domain ($k \in \mathbb{N}$, $1 \leq p \leq \infty$) if there exists a continuous linear extension operator

$$\Lambda : W^{k,p}(D) \rightarrow W^{k,p}(\mathbb{R}^n).$$
Extension domains

Definition ($W^{k,p}$-extension domain)

A domain $D \subset \mathbb{R}^n$ is called a $W^{k,p}$-extension domain ($k \in \mathbb{N}$, $1 \leq p \leq \infty$) if there exists a continuous linear extension operator

$$\Lambda : W^{k,p}(D) \to W^{k,p}(\mathbb{R}^n).$$

Definition (Sobolev extension domain)

If D is a $W^{k,p}$-extension domain for every $k \in \mathbb{N}$ and $1 \leq p \leq \infty$, then D is said to be a Sobolev extension domain.
Extension domains

Definition (\(W^{k,p}\)-extension domain)

A domain \(D \subset \mathbb{R}^n\) is called a \(W^{k,p}\)-extension domain (\(k \in \mathbb{N}, 1 \leq p \leq \infty\)) if there exists a continuous linear extension operator

\[
\Lambda : W^{k,p}(D) \rightarrow W^{k,p}(\mathbb{R}^n).
\]

Definition (Sobolev extension domain)

If \(D\) is a \(W^{k,p}\)-extension domain for every \(k \in \mathbb{N}\) and \(1 \leq p \leq \infty\), then \(D\) is said to be a Sobolev extension domain.

Theorem (A. P. Calderón, E. M. Stein, 1970)

Every Lipschitz domain is a Sobolev extension domain.
(\varepsilon, \delta)\text{-domains}

Definition ((\varepsilon, \delta)\text{-domain})

A domain D in \mathbb{R}^n is said to be an $((\varepsilon, \delta)\text{-domain})$ if there exist $\varepsilon, \delta > 0$ such that for every $x, y \in D$ satisfying $|x - y| < \delta$, there exists a rectifiable arc $\gamma \subset D$ joining x and y such that:

- $l(\gamma) \leq \frac{1}{\varepsilon} |x - y|,$
- $d(z, D^c) \geq \varepsilon \frac{|x - z| \cdot |y - z|}{|x - y|},$ for all $z \in \gamma.$
An Example

The Koch flake is an \((\varepsilon, \delta)\)-domain.
Extension theorems

Theorem (P. W. Jones, 1974)

Every (ε, δ)-*domain in* \mathbb{R}^n *is a Sobolev extension domain.*
Extension theorems

Theorem (P. W. Jones, 1974)

Every (ε, δ)-domain in \mathbb{R}^n is a Sobolev extension domain.

The result is almost sharp in \mathbb{R}^2:

Theorem (P. W. Jones, 1974)

In \mathbb{R}^2, if a domain D is finitely connected, then D is a Sobolev extension domain if and only if D is an (ε, δ)-domain.
The subcritical case

In the subcritical case where \(a < a^* \), the set \(\Gamma \) is totally disconnected, and the ramified domain \(\Omega \) is an \((\varepsilon, \delta)\)-domain.

Hence, \(\Omega \) is a Sobolev extension domain, and the trace result holds for all \(p \in (1, \infty) \):

\[
W^{1,p}(\Omega)_{|\Gamma} = W^{1-\frac{n-d}{p},p}(\Gamma).
\]
The critical case

In the critical case where $a = a^*$, the set Γ is connected. In this case, Ω is not an (ε, δ)-domain.

In this case, Ω is not a $W^{1,p}$-extension domain for $p > 2$. The trace space $W^{1,p}(\Omega)|_{\Gamma}$ cannot be easily characterized.
Questions raised by the previous analysis

In the critical case, we shall see that the traces of functions of $W^{1,p}(\Omega)$ on Γ cannot always be characterized as Sobolev spaces.
Questions raised by the previous analysis

In the critical case, we shall see that the traces of functions of $W^{1,p}(\Omega)$ on Γ cannot always be characterized as Sobolev spaces.

The critical case: questions

- characterize the trace space of $W^{1,p}(\Omega)$ on Γ: new function spaces?
Questions raised by the previous analysis

In the critical case, we shall see that the traces of functions of \(W^{1,p}(\Omega) \) on \(\Gamma \) cannot always be characterized as Sobolev spaces.

The critical case: questions

- Characterize the trace space of \(W^{1,p}(\Omega) \) on \(\Gamma \): new function spaces?
- Find relations between the trace spaces and Sobolev spaces if possible: the dimension of the self-intersection will play a role
Questions raised by the previous analysis

In the critical case, we shall see that the traces of functions of $W^{1,p}(\Omega)$ on Γ cannot always be characterized as Sobolev spaces.

The critical case: questions

- characterize the trace space of $W^{1,p}(\Omega)$ on Γ: new function spaces?
- Find relations between the trace spaces and Sobolev spaces if possible: the dimension of the self-intersection will play a role
- Extension results
Construction of a trace operator $\Omega \rightarrow \Gamma$: a sequence of operators $\ell^n : W^{1,p}(\Omega) \rightarrow L^p_\mu(\Gamma)$
Construction of a trace operator $\Omega \rightarrow \Gamma$: a sequence of operators $\ell^n : W^{1,p}(\Omega) \rightarrow L^p_\mu(\Gamma)$
Construction of a trace operator $\Omega \rightarrow \Gamma$: a sequence of operators $\ell^n : W^{1,p}(\Omega) \rightarrow L^p_\mu(\Gamma)$
The trace operator on Γ

Consider the sequence of operators $\ell^n : W^{1,p}(\Omega) \to L^p_\mu(\Gamma)$ defined by

$$\ell^n(u) = \sum_{\sigma \in A_n} \langle u \rangle_{\Gamma^\sigma} \mathbb{1}_{f_\sigma(\Gamma)},$$

where $\langle u \rangle_{\Gamma^\sigma} = \frac{1}{|\Gamma^\sigma|} \int_{\Gamma^\sigma} u$ and $\Gamma^\sigma = f_\sigma(\Gamma)$.
The trace operator on Γ

Consider the sequence of operators $\ell^n : W^{1,p}(\Omega) \to L^p_\mu(\Gamma)$ defined by

$$
\ell^n(u) = \sum_{\sigma \in A_n} \langle u \rangle_{\Gamma^\sigma} \mathbb{1}_{f_\sigma(\Gamma)},
$$

where $\langle u \rangle_{\Gamma^\sigma} = \frac{1}{|\Gamma^\sigma|} \int_{\Gamma^\sigma} u$ and $\Gamma^\sigma = f_\sigma(\Gamma)$.

Proposition

The sequence $(\ell^n)_n$ converges in $\mathcal{L}(W^{1,p}(\Omega), L^p_\mu(\Gamma))$ to a continuous operator ℓ^∞.

Y. Achdou

Sobolev extension property
Haar wavelets on Γ

We define the Haar wavelets on Γ by

\[
\begin{align*}
 g_0 &= \mathbb{1}_{f_1(\Gamma)} - \mathbb{1}_{f_2(\Gamma)} \\
g_\sigma|_{f_\sigma(\Gamma)} &= 2^{\frac{n}{2}} g_0 \circ f_\sigma^{-1} \quad \text{and} \quad g_\sigma|_{\Gamma \setminus f_\sigma(\Gamma)} = 0 \quad \text{for} \quad \sigma \in \mathcal{A}_n
\end{align*}
\]
Haar wavelets on Γ

We define the Haar wavelets on Γ by

\[
\begin{align*}
g_0 &= \mathbb{1} f_1(\Gamma) - \mathbb{1} f_2(\Gamma) \\
g_\sigma|f_\sigma(\Gamma) &= 2^{n/2} g_0 \circ f_\sigma^{-1} \quad \text{and} \quad g_\sigma|\Gamma\backslash f_\sigma(\Gamma) = 0 \quad \text{for} \quad \sigma \in \mathcal{A}_n
\end{align*}
\]

Mother wavelet g_0
Haar wavelets on Γ

We define the Haar wavelets on Γ by

$$
\begin{align*}
g_0 &= \mathbb{1}_{f_1(\Gamma)} - \mathbb{1}_{f_2(\Gamma)} \\
g_\sigma|_{f_\sigma(\Gamma)} &= 2^{n/2} g_0 \circ f_\sigma^{-1} \quad \text{and} \quad g_\sigma|_{\Gamma\setminus f_\sigma(\Gamma)} = 0 \quad \text{for} \quad \sigma \in \mathcal{A}_n
\end{align*}
$$

Mother wavelet g_0 \hspace{1cm} g_σ for $\sigma = (1)$
Haar wavelets on Γ

We define the Haar wavelets on Γ by

\[
\begin{align*}
g_0 &= \mathbb{1}_{f_1(\Gamma)} - \mathbb{1}_{f_2(\Gamma)} \\
g_\sigma|_{f_\sigma(\Gamma)} &= 2^{\frac{n}{2}} g_0 \circ f_\sigma^{-1} \text{ and } g_\sigma|_{\Gamma \setminus f_\sigma(\Gamma)} = 0 \text{ for } \sigma \in \mathcal{A}_n
\end{align*}
\]

Mother wavelet g_0

g_σ for $\sigma = (1)$

g_σ for $\sigma = (12)$
Haar wavelets on Γ

We define the Haar wavelets on Γ by

$$
\begin{align*}
g_0 & = 1_{f_1(\Gamma)} - 1_{f_2(\Gamma)} \\
g_\sigma|_{f_\sigma(\Gamma)} & = 2^{\frac{n}{2}} g_0 \circ f_\sigma^{-1} \quad \text{and} \quad g_\sigma|_{\Gamma \setminus f_\sigma(\Gamma)} = 0 \quad \text{for} \quad \sigma \in \mathcal{A}_n
\end{align*}
$$

Mother wavelet g_0 \quad g_σ for $\sigma = (1)$ \quad g_σ for $\sigma = (12)$

Every function $f \in L_p^p(\Gamma)$, $1 \leq p < \infty$ can be expanded in the Haar wavelet basis $\{g_\sigma, \sigma \in \mathcal{A}\}$:

$$
f = \langle f \rangle_{\Gamma} + \sum_{n \geq 0} \sum_{\sigma \in \mathcal{A}_n} \beta_\sigma g_\sigma.
$$
We distinguish two different cases.
Call Ξ the self-intersection set of Γ.

\[\theta \not\in \{ \frac{\pi}{2k}, \ k \in \mathbb{N}^* \}, \]

Ξ is countable,
We distinguish two different cases.

Call Ξ the self-intersection set of Γ.

$$\theta \notin \{ \frac{\pi}{2k}, \, k \in \mathbb{N}^* \},$$

Ξ is countable,

$$\theta = \frac{\pi}{2k}, \, k \in \mathbb{N}^*,$$

$$\dim_H \Xi = \frac{d}{2}.$$
Regularities of the Haar wavelets

Proposition \((\dim_{H}(\Xi) = 0)\)

In the case when \(\theta \neq \frac{\pi}{2k}\), \(k \in \mathbb{N}^*\), \(g_0 \in W^{s,p}(\Gamma)\) \(\text{if } s < \frac{d}{p}\), \(g_0 \notin W^{s,p}(\Gamma)\) \(\text{if } s > \frac{d}{p}\).
Regularity of the Haar wavelets

Proposition (dim$_H(\Xi) = 0)$

In the case when $\theta \neq \frac{\pi}{2k}$, $k \in \mathbb{N}^*$,

\begin{align*}
g_0 &\in W^{s, p}(\Gamma) \quad \text{if } s < \frac{d}{p}, \\
g_0 &\notin W^{s, p}(\Gamma) \quad \text{if } s > \frac{d}{p}.
\end{align*}

Proposition (dim$_H(\Xi) = d/2)$

In the case when $\theta = \frac{\pi}{2k}$, $k \in \mathbb{N}^*$,

\begin{align*}
g_0 &\in W^{s, p}(\Gamma) \quad \text{if } s < \frac{d}{2p}, \\
g_0 &\notin W^{s, p}(\Gamma) \quad \text{if } s > \frac{d}{2p}.
\end{align*}
New function spaces

Definition (\(JLip\) spaces, A. Jonsson 2004)

The space \(JLip^s;p(\Gamma)\) consists of all the functions \(f \in L^p_\mu(\Gamma)\) s.t.

\[
\sum_{n \geq 0} 2^{ns} \frac{p}{d} 2^n \left(\frac{p}{2} - 1\right) \sum_{\sigma \in \mathcal{A}_n} |\beta_\sigma|^p < \infty,
\]

where \(\beta_\sigma\) are the Haar wavelet coefficients of \(f\).

Equivalent definition

\[
\|f\|_{L^p_\mu}^p + \sum_{n=0}^\infty 2^{ns} \frac{p}{d} \sum_{\sigma \in \mathcal{A}_n} \int_{\Gamma^\sigma} |f - \langle f \rangle f_\sigma(\Gamma)|^p d\mu < \infty.
\]
A characterization of the trace space on Γ

Theorem (Y.A., N. Tchou, 2010)

If $1 \leq p < \infty$, then

$$\ell^\infty(W^{1,p}(\Omega)) = JLip^{1-\frac{2-d}{p},p}(\Gamma).$$
Idea of the proof

\[J Lip^{1-\frac{2-d}{p}p}(\Gamma) \subset \ell^\infty(W^{1,p}(\Omega))? \]

Explicit construction of a lifting \(E : J Lip^{1-\frac{2-d}{p}p}(\Gamma) \to W^{1,p}(\Omega) \), by using the expansion of a funct. \(f \in J Lip^{1-\frac{2-d}{p}p}(\Gamma) \) on Haar wavelets.

\[\ell^\infty(W^{1,p}(\Omega)) \subset J Lip^{1-\frac{2-d}{p}p}(\Gamma)? \]

- Prove the strengthened trace inequality: \(\forall \rho \in (2^{(p-1)(1-\frac{2}{d})}, 1) \), \(\exists C \) s.t. \(\forall v \in W^{1,p}(\Omega) \),

\[
\| \ell^\infty(v) - \langle \ell^\infty(v) \rangle_\Gamma \|_{L^p_{\mu}}^p \\
\leq C \left(\| \nabla v \|_{L^p(Y_0)}^p + \sum_{n=1}^{\infty} \rho^{-n} 2^{n(p-1)(1-\frac{2}{d})} \sum_{\sigma \in A_n} \| \nabla v \|_{L^p(f_\sigma(Y_0))}^p \right).
\]

- Use self-similarity to conclude.
For the strengthened trace inequality, map the domain Ω to a fractured domain $\hat{\Omega}$ with vertical boundaries (Weierstrass curve):
Relationship with classical Sobolev spaces

Theorem (Y.A., T. Deheuvels, N. Tchou, 2010)

1. If $0 < t < \min\left(\frac{d-\dim_H(\Xi)}{p}, 1\right)$, then $JLip^t,p(\Gamma) = W^{t,p}(\Gamma)$,

2. For all $t \in (0, 1)$ and $s > \frac{d-\dim_H(\Xi)}{p}$, $JLip^t,p(\Gamma) \not\subset W^{s,p}(\Gamma)$.

(recall that $\dim_H(\Xi) = 0$ or $\dim_H(\Xi) = d/2$)
Relationship with classical Sobolev spaces

Theorem (Y.A., T. Deheuvels, N. Tchou, 2010)

1. If $0 < t < \min\left(\frac{d-\dim_H(\Xi)}{p}, 1\right)$, then $JLip_t^{t,p}(\Gamma) = W_t^{t,p}(\Gamma)$.
2. For all $t \in (0,1)$ and $s > \frac{d-\dim_H(\Xi)}{p}$, $JLip^{t,p}(\Gamma) \not\subset W^{s,p}(\Gamma)$.

(recall that $\dim_H(\Xi) = 0$ or $\dim_H(\Xi) = d/2$)

Corollary (Y.A., T. Deheuvels, N. Tchou, 2010)

Define $p^* \equiv 2 - \dim_H(\Xi)$.

1. If $1 \leq p < p^*$, then $\ell^\infty(W^{1,p}(\Omega)) = W^{1-\frac{2-d}{p},p}(\Gamma)$.
2. If $p \geq p^*$, then $\ell^\infty(W^{1,p}(\Omega)) \subset W^{s,p}(\Gamma)$ for all $s < \frac{d-\dim_H(\Xi)}{p}$

The regularity of the wavelets shows that the result is sharp.
Principle of the proof

Estimate the $W^{s,p}(\Gamma)$-norm of a function $u \in JLip^{t,p}$ by using

- a partition of Γ and all its images by the similarities f_σ
- the Haar wavelet decomposition of u
- discrete Hardy inequalities: $\forall \gamma \in \mathbb{R}, \forall p \geq 1, \exists C$ s.t., for any sequence of positive real numbers $(c_k)_{k \in \mathbb{N}},$

$$\sum_{n \in \mathbb{N}} 2^{\gamma n} \left(\sum_{k \leq n} c_k \right)^p \leq C \sum_{n \in \mathbb{N}} 2^{\gamma n} c_n^p \quad \text{if } \gamma < 0,$$

$$\sum_{n \in \mathbb{N}} 2^{\gamma n} \left(\sum_{k \geq n} c_k \right)^p \leq C \sum_{n \in \mathbb{N}} 2^{\gamma n} c_n^p \quad \text{if } \gamma > 0.$$
$W^{1,p}$-Extension property of Ω

Theorem (T. Deheuvels, 2011)

It is possible to construct a linear extension operator P, which is continuous from $W^{1,p}(\Omega)$ to $W^{1,p}(\mathbb{R}^2)$ for all $p < p^$.*

The following theorem *a posteriori* justifies the use of several notions of trace on Γ.

Theorem (Y.A., T. Deheuvels, N. Tchou, 2011)

For all $p \geq 1$, every function $u \in W^{1,p}(\Omega)$ is strictly defined μ-almost everywhere on Γ, and

$$
\tilde{u}|_{\Gamma} = \ell^\infty(u), \quad \mu\text{-almost everywhere on } \Gamma
$$

The proof uses the extension operator P constructed for $p < p^*$.
Corollary (Y.A., T. Deheuvels, N. Tchou, 2011)

With p^* defined by $p^* = 2 - \dim_H(\Xi)$,

- for all $p < p^*$, Ω is a $W^{1,p}$-extension domain,
- for all $p > p^*$, Ω is not a $W^{1,p}$-extension domain.
Boundary problems with Neumann conditions on \(\Gamma \)

For \(g \in L^2_\mu(\Gamma) \) and \(u \in H^{1/2}(\Gamma^0) \), \(\exists! \ w \in H^1(\Omega) \) s.t.

\[
w|_{\Gamma^0} = u, \quad \text{and} \quad \int_\Omega \nabla w \cdot \nabla v = \int_\Gamma g l^\infty(v) d\mu, \quad \forall v \in \mathcal{V}(\Omega). \quad (*)
\]

where

\[
\mathcal{V}(\Omega) = \{ v \in H^1(\Omega) \text{ s.t. } v|_{\Gamma^0} = 0 \}.
\]

Goal

Let \(Z^n \) be the ramified domain truncated after the \(n \)-th generation.

The goal is to compute \(w|_{Z^n} \) with no error due to domain truncation, by using transparent boundary conditions.
A Dirichlet to Neumann operator

Theorem (Harmonic lifting: energy decay)

Call $\mathcal{H}(u)$ the solution to (*) with $g = 0$. There exists a constant $\rho < 1$ s.t.
for all $u \in H^{\frac{1}{2}}(\Gamma^0)$,

$$
\int_{\Omega \setminus \mathbb{Z}^p} |\nabla \mathcal{H}(u)|^2 \leq \rho^p \int_{\Omega} |\nabla \mathcal{H}(u)|^2, \quad \forall p \geq 0.
$$

Definition (Dirichlet to Neumann operator)

Let T be the Dirichlet to Neumann operator:

$$
Tu = \frac{\partial \mathcal{H}(u)}{\partial n} |_{\Gamma^0} \iff \langle Tu, v \rangle = \int_{\Omega} \nabla \mathcal{H}(u) \cdot \nabla \mathcal{H}(v).
$$
Transparent boundary conditions

Main idea

Self-similarity and scale invariance of the PDE imply that:
if \(w = \mathcal{H}(u) \) then

\[
\begin{align*}
\left. w \right|_{f_1(\Omega)} \circ f_1 &= \mathcal{H} \left(\left. w \right|_{f_1(\Gamma^0)} \circ f_1 \right), \\
\left. w \right|_{f_2(\Omega)} \circ f_2 &= \mathcal{H} \left(\left. w \right|_{f_2(\Gamma^0)} \circ f_2 \right).
\end{align*}
\]
Main idea

Self-similarity and scale invariance of the PDE imply that:
if \(w = \mathcal{H}(u) \) then

\[
\begin{align*}
 w|_{f_1(\Omega)} \circ f_1 &= \mathcal{H} \left(w|_{f_1(\Gamma^0)} \circ f_1 \right), \\
 w|_{f_2(\Omega)} \circ f_2 &= \mathcal{H} \left(w|_{f_2(\Gamma^0)} \circ f_2 \right).
\end{align*}
\]

If \(T \) is available, then \(w|_{Y^0} \) can be computed by solving a boundary value problem in \(Y^0 \).
Main idea

Self-similarity and scale invariance of the PDE imply that:
if \(w = \mathcal{H}(u) \) then

\[
\begin{align*}
 w|_{f_1(\Omega)} \circ f_1 &= \mathcal{H} (w|_{f_1(\Gamma^0)} \circ f_1), \\
 w|_{f_2(\Omega)} \circ f_2 &= \mathcal{H} (w|_{f_2(\Gamma^0)} \circ f_2).
\end{align*}
\]

If \(T \) is available, then \(w|_{Y^0} \) can be computed by solving a boundary value problem in \(Y^0 \).

\[\Delta w = 0 \quad \text{and} \quad w|_{\Gamma^0} = u \quad \text{(and} \quad \frac{\partial w}{\partial n} - Tu = 0). \]
Main idea

Self-similarity and scale invariance of the PDE imply that:
if \(w = \mathcal{H}(u) \) then

\[
\begin{align*}
 w|_{f_1(\Omega)} \circ f_1 &= \mathcal{H}(w|_{f_1(\Gamma^0)} \circ f_1), \\
 w|_{f_2(\Omega)} \circ f_2 &= \mathcal{H}(w|_{f_2(\Gamma^0)} \circ f_2).
\end{align*}
\]

If \(T \) is available, then \(w|_{Y^0} \) can be computed by solving a boundary value problem in \(Y^0 \).

\[
\begin{align*}
 \frac{\partial w}{\partial n} \circ f_1 + \frac{1}{\alpha} T(w|_{f_1(\Gamma^0)} \circ f_1) &= 0, \\
 \frac{\partial w}{\partial n} \circ f_2 + \frac{1}{\alpha} T(w|_{f_2(\Gamma^0)} \circ f_2) &= 0, \\
 \Delta w &= 0, \\
 w|_{\Gamma^0} &= u \text{ (and } \frac{\partial w}{\partial n} - Tu = 0) \end{align*}
\]
Solution in Z^n with arbitrary small truncation error

Algorithm

If T is available, then for all $n \geq 0$, one can find $\mathcal{H}(u)|_{Z^n}$ by solving sequentially $1 + 2 + \cdots + 2^{n-1}$ boundary value problems in Y^0 with nonlocal transparent conditions on $f_1(\Gamma^0) \cup f_2(\Gamma^0)$ involving T, and Dirichlet data on Γ^0 computed from the previous step.
Fixed point iterations for computing T

Let \mathcal{O} be the cone of self-adjoint, positive semi-definite, continuous linear operators from $H^{\frac{1}{2}}(\Gamma^0)$ to its dual, vanishing on the constants. Clearly $T \in \mathcal{O}$.

Take the map $\mathbb{M} : S \in \mathcal{O} \mapsto \mathbb{M}(S) \in \mathcal{O}$, where $\mathbb{M}(S)u = \frac{\partial w}{\partial n}|_{\Gamma^0}$, with

$$
\begin{cases}
\Delta w = 0 & \text{in } Y^0, \\
\frac{\partial w}{\partial n}|_{f_i(\Gamma^0)} \circ f_i = -\frac{1}{a} S(w|_{f_i(\Gamma^0)} \circ f_i) & i = 1, 2 \\
\frac{\partial w}{\partial n} = 0 & \text{on the rest of the boundary of } Y^0
\end{cases}
$$

Theorem

The operator T is the unique fixed point of \mathbb{M}. Moreover, for all $S \in \mathcal{O}$,

$$
||\mathbb{M}^p(S) - T|| \leq C \rho^p.
$$
The case when $g \neq 0$

The following strategy may be used for computing $w|_{Z^n}$ with an arbitrary accuracy:

- If g is Haar wavelet then from self-similarity, $w|_{Z^n}$ can be computed exactly by induction w.r.t. the wavelets, by solving a finite number of boundary value problems in Y^0 with nonhomogeneous transparent boundary conditions on $f_1(\Gamma^0) \cup f_2(\Gamma^0)$ involving the transparent condition operator T.
The case when $g \neq 0$

The following strategy may be used for computing $w|_{Z^n}$ with an arbitrary accuracy:

- If g is Haar wavelet then from self-similarity, $w|_{Z^n}$ can be computed exactly by induction w.r.t. the wavelets, by solving a finite number of boundary value problems in Y^0 with nonhomogeneous transparent boundary conditions on $f_1(\Gamma^0) \cup f_2(\Gamma^0)$ involving the transparent condition operator T.

- For a general g, expand g on the basis of Haar wavelets, and use the linearity of the problem.
The error may be made as small as desired

We obtain a method for approximating $w|_{Z^n}$ and error estimates (depending on the truncation in the wavelet expansion and of the approximation of T)

Theorem

There exists $\rho < 1$ and a constant C independent of g s.t.

$\forall n, P \in \mathbb{N}$ with $1 \leq n < P$

$$\|error^{(P)}\|_{H^1(Z^{n-1})} \leq C \sqrt{2-P} \rho^{P-n} \|g\|_{L^2_{\mu}},$$

where the wavelet expansion of g is truncated at level P.
The Neumann datum is a Haar wavelet
The Neumann datum is $\cos\left(\frac{3\pi s}{2}\right)g_0(s)$

Expansion with wavelets of levels ≤ 5 (resp. ≤ 4, ≤ 2)

Error in L_2 norm (logscale) in Y^0, Z^1, \ldots, Z^5 w.r.t. the truncation of the wavelet expansion
Helmholtz equation $\Delta u + k^2 u = 0$

The operator is no longer scale invariant. Therefore, a whole sequence of operators $T_{a^{2p}k}$ is needed. But there is a backward induction relation:

$$T_{a^{2p}k} \rightarrow T_{a^{2(p-1)}k} \rightarrow \cdots \rightarrow T_{a^{4}k} \rightarrow T_{a^{2}k} \rightarrow T_{k}.$$

and

$$\lim_{p \to \infty} T_{a^{2p}k} = T_{0}.$$

This observation allows one for designing an algorithm to solve the Helmholtz equation with an arbitrary small truncation error, except maybe for special frequencies (the eigenfrequencies of the pb).
Example: eigenmodes of the Laplace operator with Neumann cond. on Γ^0

Left: the third eigenmode, restricted to Z^3. Right: the sixth eigenmode, restricted to Z^3.
Linear evolution equations (e.g. the wave equation)

Strategy

- Compute a large number of (normalized) eigenmodes
- Compute the expansion of solution of the wave equation on the eigenmodes.

The solution of the wave equation vs. t at a given point of Ω, with a compactly supported u_0 and $u_1 = 0$